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ABSTRACT

State of the art programmable devices are utilizing
advanced processing technologies, non-standard circuit

structures, and unique electrical elements in commercial-off-

the-shelf (COTS)-based, high-performance devices. This

paper will discuss that the above factors, coupled with the

systems application environment, have a strong interplay that

affect the radiation hardness of programmable devices and

have resultant system impacts in (1) reliability of the

unprogrammed, biased antifuse for heavy ions (rupture), (2)

logic upset manifesting itself as clock upset, and (3)
configuration upset. General radiation characteristics of

advanced technologies are examined and manufacturers'

modifications to their COTS-based and their impact on future

programmable devices will be analyzed.

I. INTRODUCTION

Programmable logic has become ubiquitous in spacecraft

electronic designs as they are inherently flexible and provide

systems designers the tools to meet the new trend towards

higher integration and performance with decreasing costs and

development time. This is not unique to spacecraft

electronics as programmable device development is primarily
driven by the commercial sector. As such, the devices are

becoming increasingly sophisticated architecturally, utilizing

unique circuit structures, and are using the most advanced
technologies.

Commercial programmable logic devices are utilizing

advanced technologies, with manufacturers offering 0.35 p,m

and 0.25 p,m products, with improved performance levels

allowing them to replace ASICs in some applications. For

spaceflight electronics, these devices have the potential to

efficiently implement circuits in demanding applications such

as laser altimetry, photon pulse counting, and time-of-flight
electronics.

As the requirements for increased performance drive

device development, we see new structures such as phase-

locked loops, both digital and analog, as an example. While

providing greater system performance by de-skewing clocks

and providing clock multiplication capabilities, these
structures may be susceptible to new radiation effects. Clock

integrity is critical for system applications and we have

examined and analyzed several cases of logic upset in clock
circuitry. Modifications were required and made to the

commercial circuits to reduce device sensitivities to heavy
ions.

High-speed interconnections can be made with metal-to-

metal antifuses, utilizing current processing technologies
such as chemical-mechanical polishing (CMP). While these

antifuses are biased with relatively low electric field

strengths, preliminary studies have shown that these tmique

structures are susceptible to rupture [1]. Various "recipes" for

these elements are explored and data is shown for a high-
speed, radiation-hardened antifuse.

FPGAs, in particular, are now using some of the most

advanced technologies, scaling internal features and

improving performance with some devices operating at lower

core voltages. We have seen what is probably the last
generation of 5 V devices being produced at their limit of

0.45 p,m, the 40MX and 42MX series. All of the major

manufacturers have deep sub-micron devices, generally in the

0.35 _tm technology, some with 0.25 gm features, running at
a 3.3 V core voltage. The state-of-the-art is the announced

0.18 9m device from Vantis (AMD), the VF1 series; this
device runs at a core voltage of 2.5 VDC.

The lower core voltages are attractive to system designers

because of their high speed and lower power consumption,
power being a function of V 2. The effects on the SEU and

total dose characteristics are studied and are relatively
consistent across manufacturers and foundries. Note

however, that these advanced devices, to be usable in

practical systems, retain an input tolerance of 5.5 volts, a

concern for gate rupture in these deep sub-micron processes,

requiring special circuit structures to prevent breakdown and
conduction to the VOD rail.

Configuration upset has been predicted, detected, and
analyzed in FPGAs. While the commercial circuit structures

are specifically designed for robust behavior in the industrial

environment, many design implementations do not handle

faults well in the heavy ion environment.

A variety of devices were evaluated in this paper. Some

are off-the-shelf production devices; others are either pre-

production devices or early prototypes. Applications to a

specific product should be done carefully as continuing

technological advancements are being made by the
manufacturers.
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II. RUPTURE substrates program at approximately 30 VDC supporting

A. Oxide Nitride Oxide (ONO) Antifuses

The ONO antifuse is frequently used in non-volatile

space flight applications. Biased, unprogrammed antifuses
are susceptible to heavy ion-induced rupture and
improvements have been made in antifuse design [1]. Recent
testing has augmented our data set for the hardened antifuse

in the RH1020, with the production devices' antifuses having
a 90 A thickness. Results are shown in Figure 1. The beam
was normal to the die, worst-case, and a fluence of 107
ions/cm 2 used for each run. A significant positive margin
exists above a bias voltage of 5.5 VDC at an LET of
37 MeV-cm2/mg. This is adequate for most missions and the

antifuse can be classified as radiation-tolerant; it has
improved radiation performance over its commercial
ancestors.
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Figure 1. Summary of antifuse rupture data. Positive margin
at LET= 37 MeV-cm2/mg is shown for production RH1020
with a hardened ONO antifuse. One "recipe" of an M2M
antifuse did not fail at LET=82 MeV-em2/mg,
Vr_tAs= 400 mV.

B. Metal-to-Metal (M2M) Antifuses

Metal-to-metal antifuses hold performance advantages
over the ONO version; programmed resistance's are -25-50
ohms versus ~100-500 ohins for FPGA implementations.

M2M antifuse resistance is < 1 ohm for the less density-
critical programmable substrates. These devices are enabled

by advances in processing technologies that are critical for

controlling the thickness of the programmable elements.
References [1-3] discuss their hardness to total dose effects.

While ONO antifuse thickness is of the order of 100 A,
M2M antifuse thickness typically varies from 500 A to
I000 A, resulting in a decreased electric field strength of a
factor of 5 to 10, assuming equal bias voltages. This
assumption is not valid for current devices. Programmable

analog supply voltages of + 12VDC; careful routing ensures
that no antifuse sees more than a 12 VDC bias. Recent M2M

antifuse FPGAs operate at lower voltages, further decreasing
the electric field strength in the biased antifuse by 35%.
Reliability studies conducted on M2M antifuses [2, 4, 5] show
MTBF as a function of bias voltage.

Antifuse rupture data is a function of heavy ion LET and
electric field strength [1] and the failure points of some of the
amorphous silicon antifuses occur at a far lower electric field
strength than either the ONO antifuses or the SiO2 reference

data [6], Failure analysis, using several different techniques,
has been conducted, assisting in the determination of failure

and investigation of the mechanisms. Emission microscope
techniques have proven successful for ONO antifuse and a

liquid crystal methodology for a variety of M2M damaged
antifuses. In addition, current-voltage curves for damaged
antifuses vary by construction.

To expand on our results, a next generation DUT card
has been built with new devices designed and fabricated for
M2M antifuses. Devices that have been tested include the
QL3025, prototype A54SX16, RT54SX16, and the

RH54SX16's, and the UT22VP10. The QL3025 is a 3.3 V,
0.35 _tm device fabricated at TSMC. Each of the SX

prototypes uses a different antifuse "recipe" for these
experiments. The A54SX16 is also a 3.3 V, 0.35 _m device
while the RT54SX16 and the RH54SX16 are both 3.3 V,
0.6 p.m devices. These devices all have 5 volt-tolerant I/O,
supported by a 5 V bias, and have a 3.3 V core. The
UT22VP10 is a 5 V PAL; the test data for this device was

inconclusive and will not be discussed in this paper. The
QL3025 had significant latchup problems, preventing an
analysis of their antifuse structure.

Results for the three SX M2M antifuse prototypes is
shown in Figure 1 where the bottom reference line is set at

3.6 volts, the maximum rated voltage for this technology. At
a LET of 37MeV-cm2/mg, all of the devices showed

significant positive margins, with no damage detected, giving
SEU-tolerant performance. At the higher LETs, differences
are observed between the three variants, with two of the

devices failing at an LET of 45 MeV-cm2/mg.
The significant result is the performance of "recipe M."

Several lots were tested, showing radiation-hard performance,
no damage at an LET of 82 MeV-cm2/mg. Additional

margin for this design was demonstrated by increasing the
bias voltage to 4.0 VDC, 11% greater than the rated
maximum. Further experiments are planned which will test
the effects of different variants of the recipes to give further
insight into the mechanism.

Testing techniques are similar for the ONO and M2M
antifuses although damage to the M2M-based structures are

far easier to detect. These structures, designed for lower
programmed impedances, also have lower impedances when
damaged by a heavy ion. Despite the higher bias across the
ONO structure, the current draw by a damaged M2M
structure is many times higher.



Pre-Print to be published in the IEEE Transactions on Nuclear Science, December, 1998

III. LOGIC UPSET C. Rtt1020 Logic Upset Analysis and Mitigation

A. Introduction

Logic upset is s a transient pulse from a single ion strike.

This can occur in combinational circuits or global resources

such as clock and reset lines. Previously, logic upset was
observed in an FPGA but cross-sections were not determined.

B. Logic Upset Examples and Instrumentation

Gate upsets in the RH1280 were observed when running
at a reduced supply voltage of 3.3 VDC + 10%; there were no

logic upsets when running at supply voltages > 4.5 VDC.

Failures occurred in the voter circuits of TMR strings and

correlation with on-chip error monitors confirmed logic

upset. This is an example of a data upset, with the glitch or

runt pulse arriving at the input to the flip-flop during the

critical time when the data is latched, typically a small
fraction of a nanosecond. There was no effort to harden the

logic circuits of the RH1280, originally a commercial design.
The CX2041 (0.6 _tm), was evaluated for SEE at a bias of

3.3 VDC. In this device, a low-skew clock tree is built and

balanced to support user flip-flops. During heavy ion
irradiation, large numbers of errors appeared in bursts with

some errors disrupting the entire chip, indicating disruption
to the clock distribution network. Errors were observed

simultaneously in several independent shift register strings,

with the only common element being the clock tree.
Additionally, few errors were reported on the SEU monitor of

our SEU-hardened shift register [1], while the shift register

itself gave burst errors. This is an example of a clock upset.

The DUT stimulus pattern is critical for detecting clock

upsets: all 'l's or all 'O's are useful for detecting pattern

sensitivity in flip-flops but will mask clock upsets since an

extra clock will be undetected. Similarly, a Johnson twisted

nng counter, with at most one '1'-'0' transitions, will have

trouble distinguishing clock upsets from SEUs.

SEU time-tagging has been added to our test equipment,

permitting both SEUs and logic or clock upsets to be
measured simultaneously. Sample output from an RH1020

run is shown in Figure 2, where error counts for each of the

three monitors is plotted against sample number, with

approximately 250p.s between sampling points. The

unhardened shift register's error counts (DOS) rise linearly

and then jump approximately 17 counts, one-half the length
of the shift register. Concurrent with this jump, the hardened

output's error count (DOH) undergoes a similar jump and
stays flat, as it rejects SEU's. Note that the hardened shift

registers SEU monitor (TMR MON) never jumps, and rises
linearly with time, showing a relatively constant error rate in

the flip-flop elements. By taking the first derivative of the

error count with respect to sample number, the number of

clock upsets may be counted and the number of upsets
attributed to clock upset may be removed from the total error

count, permitting an accurate assessment of flip-flop SEU
sensitivity as shown in Figure 3.

The clock upset cross-section in pre-production models of

the RH1020 is significantly higher than that of it's

commercial cousin, the AI020B (1.0 _tm device). This is

thought to be attributed to moving the design to the higher
performance radiation-hardened process, where small runt

pulses propagate easier and flip-flops respond to signals with

a smaller pulse width and amplitude [7].
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Figure 2. Clock upset in the RH1020 with each SELf time-

tagged. The concurrent jumps on DOS and DOH, two
independent circuits, indicate clocks upset, as the clock is the
common element
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Figure 3. Quantitative analysis of clock upset raw data It is
performed by plotting the sample-to-sample differences in the
errors counters

Although a channeled architecture with individual

buffers and clock lines for each row, the A1020B/RH1020

shorts the outputs of the buffers together to minimize clock

skew, resulting in many common points to the distribution

network. The earlier A1020 (2.0 _m) and A1020A (1.2 rtm)
devices had isolated row buffers and similar error signatures

indicated that the upsets were present in the input stage, not
in one of the clock row drivers. A number of analytical and

experimental techniques such as laser stimulation and using a
focused ion beam (FIB) to perform circuit modifications
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furtherisolatedthe sensitive region to a TTL-compatible
input stage employing a small amount of hysteresis.

Analysis of transistor sizes and clock upset cross-sections

led to the preliminary conclusion that the upset was

happening on the clock's transition. Several experiments

were run to verify this. During heavy ion irradiation, the

input was held at either rail, with few clock upsets detected

with the clock input grounded. This dependence is consistent

with transistor-level circuit analysis, which showed a strong

asymmetry, typical of TTL-level inputs, and laboratory noise
testing on the input stage. This conclusion was confirmed

with heavy ion irradiation by measuring the frequency

dependence of the upset as shown in Figure 4, with four

devices tested from 10 kHz to 1 MHz, each run having a
fluence of 10 7 ions/cm 2. The large part-to-part variation in

Figure 4 is typical for this effect, as the propagation of a clock

runt pulse and acceptance by a flip-flop is marginal and

dependent on specific device parameters. Analysis of the
number of upsets per hit, usually about one-half of the shift

register length, confirms this as a runt pulse, consistent with

other laboratory tests and circuit analyses.
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Figure 4. RH1020 (pre-production devices) input buffer
transients resulting in "clock upsets." The upset occurs on the
transition and is shown here as a frequency dependence

While this phenomenon has been referred to as "clock

upset," we refer to it in the more general sense as "logic
upset." An examination of the schematics for non-dedicated

I/O stages showed a similar circuit construction to the

dedicated clock input pin on the 1020 series. A special DUT

was designed and constructed to verify this I/O module's

sensitivity. Since regular I/O pins in the RH1020 do not

permit access to a low-skew signal distribution network, flip-
flops were hand-placed so that the clock input for each of the

flip-flops was attached to the same routing segment and no

skew was confirmed with the static timing analyzer. While
detailed cross-sections were not measured as a result of

limited test time, upset on these I/O pins was detected,
confirming the analysis' conclusion that the fault was in the

input stage and not in the clock distribution network. These

"non-clock" pins will show an edge SEU sensitivity since

typical circuit applications such as ripple event counters use
these pins as clocks.

Based on circuit analysis and SPICE simulations, along
with the heavy ion. laser, and laboratory tests on AI020,

A1020A, A1020B, and RH1020 (including those with

modified circuits using the FIB), a new production lot was

fabricated, with the original commercial TTL-compatible

input circuit design modified to mitigate the logic upset.

While the cross-section of the original devices was low,
approximately 10 .6 cm2/Clock, the modifications resulted in a

reduction by an order of magnitude. Figure 5 shows the

results, plotting both typical pre-production data vs. an

average of five production devices. Clock upset was also

detected in the A1020, A1020A, A1020B, and CX2041
microcircuits.
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Figure 5. Clock upset performance of pre-production and
production RH1020 devices. The production devices had a
modified input circuit for improved SEE performance

IV. CONFIGURATION UPSET

A. Introduction

For many types of microcircuits, the mode and the

control of the chip may be configured in a variety of ways.

The configuration of a field programmable gate array may be
controlled by an antifuse, an SRAM cell, a non-volatile

memory cell, or a combination of these technologies.
Advanced microcircuits may contain various test modes as

well as functions reserved for the manufacturer, such as
device identification or programming.

Configuration bits may be susceptible to SEUs and a loss

of control of the integrated circuit may result. Reference [8]

gives a good overview of this type of effect and shows failure
modes for an AT28C010 EEPROM, which fall into two

classes of failures. One class corresponds to an SEU in the

output data register. A second class, consisting of two
distinct sub-classes, led to a semi-permanent loss of control

and an increase of supply current.
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B. Analysis of a Configuration Upset

Tests were run on prototype FPGAs. The devices

would, when irradiated with heavy ions, apparently lose all

functionality until the power was cycled, accompanied by

changes in the device current. The following section will
determine the failure mechanism as well as discuss test and

analysis techniques. These prototype devices implement a

new architecture for this manufacturer with test samples
utilizing two different scaling factories and three different
foundries.

A representative run showing one class of error
signatures is shown in Figure 6. A 5 V bias is used for 5 volt-

tolerant I/O and a 3.3 V bias powers the array core and output
drivers. Large currents were observed and remained until the

device's power was cycled. In some cases, the current draw

exceeded 800 mA, the programmed setting for the power
supply. Although this current rise is often a result of SEL, no

determination was immediately made. Similar results were
seen on devices from several foundries and the device

irradiated in Figure 6 was from a radiation-hardened line

using a 2 _tm epitaxial layer. The design rules for the device

were consistent with good latchup performance and the small

failure cross-section suggested a different mechanism. Other

failure signatures were observed, again with an apparent loss

of functionality. One class shows the current levels dropping
from their active state to quiescent levels.
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Figure 6. Strip chart during irradiation of a prototype FPGA
produced on a radiation-hardened, 2 grn epi line. The current

on some runs exceeded 800mA and was caused by a
configuration error from an SEU in the 1149.1 TAP controller.
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It has been determined that these two cases have a

common cause, and is a result of the IEEE JTAG 1149.1 TAP

[9] specification and implementation. This standard specifies

the interface and operation of features to support test and
other operations at the board and device level.

An overview of the ' 1149.1' scan configuration is shown

in Figure 7, with a set of cells between the device's pins and

the internal core logic. This permits various operations such

as sampling the devices inputs, driving the external pins to
known values, or presenting test inputs to the device core.

The scan cells form a data register and are configured as a
shift register. Other 1149.1 functions include device

identification and other device specific features such as built-

in self test (BIST), programming, etc.

System
2-State
Output

Figure 7. The IEEE JTAG 1149.1 scan architecture. The logic
core is surrounded by the scan cells, which can perform normal
I/O functions or be controlled from the test access port (TAP).
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Figure 8. An SEU in the TAP controller. Undefined data is

loaded into the output of the Instruction Register causing an
apparent loss of functionality.

The test access port (TAP) controller commands the test

interface and registers with a sixteen-state sequencer. Figure

8 shows a simplified diagram of the basic configuration as it

is typically implemented, without the hard reset pin (TRST!,

which is optional in the standard), along with the instruction

register. The output of the instruction register controls the

device and consists of two sections, a shift register for serial

loading and a parallel latch to hold the instruction, which is

loaded and cleared on command from the TAP controller.

The JTAG nomenclature defines TCK as the clock to the

TAP controller, TDI is test data in, and TDO is test data out.

TMS (mode pin, not shown) guides transitions in the TAP
controller.

State assignments for the TAP controller may be

arbitrarily selected with the states and transitions rigidly
defined in the specification. The Test-Logic-Reset state is

used for normal operations with the TAP controller asserting
RESET, forcing the output latch to load an instruction which

does not affect the device's operation. An analysis of the

TAP controller's state diagram shows a well-designed, robust
controller for commercial and industrial applications, tolerant

of faults that would be expected in these environments (such

as pins being shorted) and no lock-up states. All paths will
return the machine to the Test-Logic-Reset state within 5

TCK cycles with TMS held high. However, when analyzing
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thestatediagramforSEUsensitivity,the machine will return

to the Test-Logic-Reset state, but, if the appropriate state bit

is upset, via a path that moves through Update-IR, which

latches new data into the instruction register's latch, giving
the microcircuit a new command mode or configuration.

Analysis of the state assignment used in the prototype devices

tested showed that a single bit error could force sequencing
through the Update-IR state.

Note in Figure 8 that the shift register located in the
instruction register is not held in reset when the TAP

controller is in the Test-Logic-Reset state. This is consistent

with the 1149.1 specification, which states that the shift

register is undefined in that state, amongst others, with the

authors of the specifications not anticipating SEUs. When an

SEU flips a bit in the TAP controller and the Update-IR is

traversed, arbitrary values are loaded into the IR register,
with an nnpredictable effect on the chips operation and state.

The small number of susceptible bits in the TAP

controller is consistent with the failure rate during heavy ion

irradiation. However, latchup was not immediately ruled out,

as we kept open the possibility that a design rule may have

been violated in one spot which was not caught by the design

rule checker. The next experiment used a 6 kHz clock

driving the TCK pin with TMS held high. 6 kHz was

selected to facilitate instrumentation while having a minimal

probability of two upsets in the 5 TCK sequence. In this

mode the device experienced functional failures during

irradiation but power cycling was not required to restore the

device to an operational mode, as would be required after a

SEL. Note that each device must be analyzed to ensure that

damage can not result from operation in this mode and that a
higher frequency for TCK should be used if devices with this

design are flown.

The failure mechanism was further investigated by
placing the instrumentation in time-tagging mode with the

6 kHz signal driving TCK. Sample results are shown in

Figure 9, with the outputs of error counters shown for the two

independent flip-flop strings, sampled at approximately
4 kHz. Three jumps are seen, with both error counters

changing simultaneously and in equal amounts, similar to
that seen from a clock upset, discussed above in Section III.

A closer examination and further tests with various DUT

stimulus proved that this similar signature could not have
been clock upset. Examination of the error counts showed

sizes that were too large to suggest clock upset for the length
of the shift registers and clock frequencies used. However, a

brief oscillation of the clock buffer could not be ruled out,

with perhaps multiple transitions. The next test was to

decrease the TCK frequency by an order of magnitude and

observe the frequency of configuration losses and the

magnitude of the jumps. By examining the error counts,

which are based by the 1 MHz DUT clock, the period of time

of the malfunction can be determined precisely. This,

coupled with decreasing the TCK frequency by an order of

magnitude, resulted in the rate of configuration upsets

remaining constant but the size of the jumps increased. The

longer periods of loss of functionality would not have

occurred in clock upset, which is an asynchronous affect.

Lastly, additional runs and changes in the input patterns

resulted in data sets where only one of the two shift registers

experienced the jumps in error counts. In this mode, by

holding the data constant, for example, a matching value in
the boundary scan register would show no errors while a fault
was occurring.
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Figure 9. Transient functional failures of a prototype FPGA
incorporating 1149.1 circuitry. The duration of the failure is a
ftmction of the TCK frequency.

V. RADIATION TEST RESULTS AND ANALYSIS

This section will summarize, discuss, and analyze recent
radiation test results of a more general character than the

sections above. Tests continue on existing programmable

products to support on-going flight programs and emerging

trends. On the advanced technology front, the first deep sub-
micron programmable data is presented which show

radiation-tolerant performance for some parameters. With

slight modifications made to the commercial foundry's
process, radiation-hard performance levels were obtained.

A. Heavy Ion and Proton Induced SEU

1) Heavy 1on Effects and Analysis

The RH1020, which is based on the A1020B commercial

design, has recently been characterized for SEU performance.

The SEU performance of the A1020B is heavily influenced by

the Act 1 architecture, which contains no hard-wired flip-
flops; latches are made by feeding back the output of the 4:1

multiplexor element back to its input via the routing channels

and through, antifuses. Radiation-tolerant performance is

obtained since the pre-laid routing tracks have a parasitic
capacitance and the antifuses have parasitic resistance which

act as a filter. The weakness of this architecture with respect

to SEU is the design of the module resulting in very

asymmetrical behavior, an artifact of its commercial origins,

with the weaker state dominating the upset rate. The

RH1020, fabricated on the Lockheed-Martin Federal Systems

(LMFS) 5 p,m epitaxial process would be expected to have

similar SEU performance to its commercial equivalent. The

data shown in Figure 10 shows this. Similarly, the Act 2
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AI280A and RH1280show similar heavyion SEU
performance.

A similaranalysiscanbeappliedtotwoquick-turnASIC
families,theQYH500(0.8p,m)andtheCX2001(0.6btm),
produced by Chip Express. Neither series contains hard-

wired or dedicated flip-flops with the NAND-based QYH500

giving superior SEU performance to the coarser grained,
multiplexor-based CX2001. Sensitive circuit nodes internal

to the CX2001 logic module may be hit by an SEU, without

the parasitic capacitance of a routing track adding to the

storage elements SEU response time as in the QYH500,

which has excellent SEU characteristics. It is interesting to

compare the CX2001 and Act 1 architectures, which are very

similar, and it can be expected that the mechanism leading to
the vulnerability of the Act 1 module leads to the SEU
performance of the CX2001 module.

_ _10208 _ BNL. 9197
_= BNL, 9/97

.__. 104 _ RHI020 _ -- _..

_ 10 4

.__

O 10 "_

10 20 30 40 50 60 70 80

LET (MeV-cm_/mg)

Figure 10. Comparison of SEU performance for devices
fabricated at commercial (MEC) and radiation-hardened
(LMFS) foundries.
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Figure 1 l. SEU Response of hard-wired flip-flops at 1.0 Ima,
0.6 lain, and 0.35 I,tm feature sizes. The 1.0 btrn device has a
nominal 5 V bias; the others have a 3.3 V nominal bias.

Utilizing prototype RT54SX16 and A54SX16 devices, we

can further measure and analyze the SEU performance of

3.3V technology components down to 0.35 _tm feature sizes.

Last year's study [1] of 0.6 p,m devices utilized a small

pattern oriented towards reliability testing; this study uses

pre-production devices with 400 flip-flops per DUT, giving
more accurate thresholds and cross-sections with the results

summarized in Figure 11. Both of the 3.3 V sea-of-modules

devices, with the more symmetrical circuit designs,

outperform the 5 V 1.0 I,tm A1280A. Interestingly, the

0.35 _m A54SX16 prototype outperforms the 0.6 _tm
RT54SX16 prototype with both devices having identical test
patterns programmed.

2) Proton Effects and Analysis

A number of programmable devices have been tested for

proton sensitivity and Table 1 gives estimates of cross-

sections for approximately 195 MeV protons. The AI280A
has been tested previously. A review of the data and test

plan, along with the low heavy ion upset threshold for the

hard-wired flip-flops, led us to repeat this test using an array
of 19 devices from four different production lot date codes.

Each of these devices upset, with runs being conducted at

both the worst-case 4.5 VDC and nominal 5.0 VDC supplies.
The A1280A results are discussed in detail in [10].

Table 1. Proton Sensitivities at 195 MeV

Device Type

A1280A

RHI020

RH1280

QYH500

RT54SX16

QL3025

A54SX16

JT22VP10

Size/Voltage

(nominal core)

1.o_5.ov
1.0 _,m/5.0V

o.8 m_/5.ov
0.S btm/3.3V

0.6 p,m/3.3 V

0.35Fm/3,3V

0.351xm/3.3V
N/A/5.0V

Est. X-Sec

(_m'/f-0
137 x 104_

< 2 x 104_

400 x 104_

< 0.5 x 1045

6 x 10 "]_

< 4 x 1045

-3 x 104_

2 x 10 "ll

Comments

19 devices

S-Module

No upsets

No upsets

Cypress die

The behavior of the radiation-hardened FPGAs is

examined for proton upset. The RH1280, based on the

commercial A1280XL, has a relatively large upset cross-
section, as the device was not modified for SEU hardness.

The RH1020, based on the commercial A1020B, is also

susceptible. The 3.3 VDC small feature-sized

commercial devices did relatively well, with upset cross-

sections having the same order of magnitude as the 5.0 V

RH1020 which utilizes routed flip-flops. No upsets were

detected in the QL3025's, consistent with the heavy ion tests,

where no upsets were detected with ions having a LET of
18.8 MeV-cm2/mg, although total fluence was low because of

SEL problems. The cross-sections of the prototype
RT54SX16 and the A54SX16 are low, consistent with the

heavy ion data of Figure 11.

Lastly, as seen in Table 1, no upsets were detected for
QYH530 ASICs, with devices selected from two one-mask

production lots. The devices in this test configuration were
operated at 3.3 volts.

3) SI_-IM Configuration Memory Analysis

SRAM-based FPGAs are configured by loading state

information into SRAM cells are popular commercially and,
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as discussed below, are the subject of several development
efforts for space flight electronics. These SRAM-based

devices currently hold a density edge for commercial devices,

even taking various gate counting methodologies into

account. However, for a radiation-hard device utilizing
existing architectures, there will, for the near-term at least, be

restrictions on device density.
25x10_ .

20x10_

"_ 1.5x10_

_ 1.ox1_
8

500.(_103.

o.c
o

. , , , , . , ,

:20 40 60 80 100 120

Gate Counts (kGates)

140

Figure 12. Number of configuration bits vs. gate count for four
families of FPGAs. Architectures show different "efficiencies"
per configuration bit.

The commercial SRAM-based FPGA vendors each take a

differing approach to their architecture, offering structures

such as look up table (LUT)-based and logic-based modules,

different module granularity, etc. An analysis of almost all
available and announced devices shows that the ratio of user

flip-flops to user on-chip SRAM to configuration memory is a
constant, with approximately an order of magnitude between

each storage type. Focusing on the configuration memory bits

that dominate, we can see the linear increase in configuration

storage as a function of device capacity in Figure 12. The

slopes of these curves gives a measure of the configuration bit

efficiency for each architecture that is critical for assessing
the impact of producing a radiation-hardened device. Even at

the 100kgate density level, we can see a range of
configuration bits from below 500 x 103 to almost 2 x 106.

Extrapolating to higher device densities, it is clear that

radiation-hardened devices are not practical for state of the

art commercial technologies. SEU-tolerant applications, as

discussed in [1], would employ checking circuits to verify the

contents of configuration memory and take corrective action
in the case of a fault. It would have to be shown that no

permanent circuit damage would occur. The system design

would have to be tolerant of a pause in circuit operation if a

reload or partial reload is necessary and prevent any

erroneous signals from propagating to a critical part of the

system. As device geometries continue to shrink, reducing

the 'cost' of the silicon, it may become feasible to provide a

TMR plus voter for each configuration bit with a non-

intrusive, on-chip background process scrubbing the
configuration memories.

4) Mitigation Technology

TMR for user FPGA circuits has been discussed and

analyzed in [1] and while not resource efficient, it is used for

the effective SEU-hardening of flip-flops. As the commercial

industry has moved toward hardware description languages
(HDLs) such as VHDL. designers were locked into tedious

schematic-based solutions. Over the past year, modifications

and scripts for commercial software have been released,

offering a choice of HDL tools as well as macro generators

and custom schematic libraries. Typically, the designer may

select levels of SEU hardening, such as limiting flip-flop
selection to "C-Modules" or by selecting TMR structures.

B. Single Event Latchup

Recent latchup test results are shown in Table 2.

Destructive effects were observed for the two Quicklogic
devices, the QL24x32 and the QL3025. The 0.65 Ism series

Cypress device had been tested previously with similar

results. The QL3025 is a member of the new pASIC3 family,
utilizing a 0.35 gm TSMC process.

Quick-turn ASIC prototypes are configured by 'laser

programming' while flight devices are processed with a one-

mask technology. The one-mask QYH530's performed

similar to the LPGA devices which were tested in [1], with

SEL LET thresholds of approximately 60 MeV-cmZ/mg. The
thin-epi CX2041 LPGA devices easily latched, both at

VCC = 5.0 and 3.3 volts. Recent testing did not detect

latchup at a LET of 37 MeV-cmZ/mg when biased at 2.5 volts.

Lastly, while commercial XC3090's had a SEL threshold

of approximately 4-7 MeV-cmZ/mg [1], the specially

processed XQR4036XL prototype showed no latchup at an

LET of 100 MeV-cm2/mg at a temperature of 125°C, showing

radiation-hard performance for this parameter [11].

Table 2. Latchup Summary

Device Type

RH 1020

QL24x32B

RT54SX16

QYH530

CX2041

A54SX16

QL3025

XQR4036XL

Size/Voltage

(nominal core)

Loe.m/_.ov
0.65pm/5.0V

0.6 Fm/3.3V

0.8 _m/5.0v
0.6 paW2.5V

0.35/am/3.3V

0.35Fm/3.3V

0.35/asn/3.3V

Threshold

(MeV-cmZ/ms)
> 74

Comments

< 18 Destructive

> 82

52 One-Mask

> 37 LPGA

> 74

< 11 Destructive

> 100

C. Total Dose

Lot-specific total dose testing is used to support on-going

NASA flight programs. The 1.0 t,tm A1280A/MEC and the

0.8 _tm A14100A/MEC are popular devices with space flight

designers utilizing commercial/military-grade technologies.
We have seen performance for the A1280A and the A14100A

(Act 3) of about 7-10 krads (Si) and greater than 20 krads (Si)
respectively. Recent test data show the start of a trend, with

severely decreased TID performance for recently fabricated
AI280A, AI460A, and A14100A die.
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Recent data is shown in Figure 13 for new 0.35/am
3.3 VDC, 0.45 _tm 5.0 VDC, and 0.6 p.m 3.3 VDC devices.

The 5 V A42MX09 did poorly at about 6 krads (Si) while the

3.3 V core devices all showed solid radiation-tolerant

performance. Of note is the specially processed 0.35 _tm
XQR4036XL, which passed the 60 krad (Si) point with no
parametric or functional failures. Devices have been

submitted for product analysis as it is thought the reduction in

specific structure dimensions has played a role in the
increased total dose performance of these four 3.3 V device

types, clearly indicating a trend. 0.35/am, 3.3 VDC CX3001
prototype performance results will soon be added to our
database.
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Figure 13. TID performance for new and prototype DUTs.
COTS produced devices with a 3.3 volt core exhibited

radiation-tolerant performance; a modified COTS device
passed at > 100 krads (Si).

Process modifications have been made to the prototype

RT54SX16, with three splits of our test lot. Split 'A' was

fabricated unmodified from the typical process, and lot splits
'B' and 'D' represent different levels of modification. A

series of experiments validated the predictions, with improved

total ionizing dose performance. With very conservative test

standards and no annealing, lot split 'B' passed at 80 krads
(Si) and lot split 'D' easily passed at the 100 krads (Si) level.

This experiment shows the potential for a modified COTS

part exhibiting radiation-hard, total dose performance.

Further testing has been conducted on the 0.8 Ixm

QYH500/Yamaha series. Previous testing [1] used laser

programmed parts useful for rapid prototyping. Recent

testing on two lots of "one-mask" devices, which are

programmed with a single etch and are passivated, had
performance levels of 15 to 30 krads (Si). The same DUT

logic design was put into the more architecturally attractive

0.6p.m CX2041/Tower device, showing a total dose

capability of approximately 7 krads (Si). Based on the results

of the prototype deep sub-micron FPGAs, we will next

evaluate the 0.35 l.tm CX3001/CSM family.

VI. HARDENING EFFORTS

A. RHI 020 and RHI 280 Devices

Over the last few years, RH series devices have been

produced, using Lockheed-Martin Federal Systems as a

foundry. Initially the commercial design was to be used,

which kept the COTS design intact, achieving total dose
hardness from the use of the LMFS process. While the

A1020B 10 _m epi device does latchup [12], qualification

testing on the RH1020 5 p.m epi process showed no sign of
latchup and excellent total dose performance.

Based on the susceptibility of the ONO antifuse to

rupture as a result of heavy ions [12], the antifuse thickness in

the RH series was changed, decreasing the electric field

strength which provides a more radiation-tolerant solution.

Section III discussed the vulnerability of the RH1020's input

buffer to single event transients and the improvements gained
by redesigning the circuits. No effort was made to harden the

storage elements with SEU performance ranging from low
tolerance to "rad-tolerant" levels.

B. CGaAs CLAy-IO

The goal of the AFRL/NASA/Motorola/SPEC

complementary GaAs FPGA is to provide for low power, high

speed, electronics for communication applications. Using

0.7 _tm low temperature technology, it is planned to achieve

350 MHz performance using a 1.5 VDC power supply with

no SEL, an SEU LET > 20 MeV-cmZ/mg, and a total dose

hardness exceeding 100 Mrads. The device is architecturally
based on the re-programmable National Semiconductor
CLAY-10 architecture.

C. SOIAT6010

This NASA/SNLPrloneywell/Atmel program will

radiation-harden the AT6010 using a Honeywell silicon-on-

insulator process. Goals for the program include a total dose

hardness exceeding 200 krads (Si), no SEL, and an SEU

threshold of > 30 MeV-cm2/mg for both user storage and the
configuration elements. This FPGA will be a 5 V device.

D. XQR4OOOXL

By special processing, the XQR4036XL, a 0.35 _tm
device, as discussed in Section V, has demonstrated a total

dose capability of 60 krads (Si) while meeting functional and

parametric specifications. No latchup of the 7 _tm epi-based

device was detected at an LET of 100 MeV-cm2/mg and a
temperature of 125°C [13].

E. R TSX and RHSX

These 0.6 rtm devices are based on the commercial

A54SX series and have had prototypes tested over the past
two years. RTSX prototypes are produced at MEC and RHSX
prototypes are "fabricated at LMFS. As discussed in Section
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V, total dose hardness for the RTSX can be made greater than

100krads (Si) and the RHSX prototype easily passes
200 krads (Si) [1]. A radiation-hardened antifuse structure
has been demonstrated passing tests at a LET of
82.3 MeV-cm2/mg. Present design modifications include the
addition of the optional TRST! line to harden the IEEE JTAG

1149.1 TAP controller and a modified hard-wired flip-flop to
increase SEU hardness from radiation-tolerant levels to
radiation-hard. This device operates with a 3.3 VDC core
and is 5 V-input tolerant.

VII. CONCLUSION

Programmable devices will continue to be of increasing
importance to spacecraft electronics designers as system
requirements increase the trend towards higher performance
electronics with increased processing bandwidth and shorter

development times. These devices will be required for on-
board processing of the increasing data volumes from sensors

that cannot be accommodated by typical data storage and

compression schemes with the available down link telemetry
rates. State-of-the-art, commercial programmable devices
have recently progressed rapidly down the technology curve,
with operating frequencies rivaling that of high-powered
discrete designs and ASICs, in many cases.

Programmable devices can be either custom-designed for
space applications or rely on commercial technology and its
associated infrastructure. While most programmable devices

for space flight are derivatives of commercial designs, the
LMFS PROM was designed with radiation issues in mind

utilizing a low (0.1 V) bias across unprogrammed ONO
antifuses to ensure high-reliability.

Commercially-derived devices' radiation tolerance range
from poor to radiation-tolerant, in most cases. Some of the

radiation hazards stem from structures and technologies that
are perfectly reliable in the conunercial/military sector, such
as antifuses, TTL-compatible input buffers, flip-flop designs,
and circuits such as the JTAG TAP controller, as examples.
Total dose performance of 5.0 VDC devices is highly
variable, subject to process variations at the commercial
foundries.

We have shown that devices' radiation performance
levels can be increased to radiation-hard levels without the

use of an expensive radiation-hard process. This is through a
combination of modification of circuit designs and
commercial processes. Examples include a radiation-
hardened antifuse and total dose performance greater than

100 krads (Si). A number of manufacturers are now actively
modifying their designs and their foundries' processes to

increase the radiation performance of commercially produced
devices

Within the next few years, the commercially produced,
modified devices will likely provide solid radiation

performance for the majority of applications, including high-
speed processing. Similarly designed devices, produced on
traditional radiation-hardened lines, will be available for high
levels of radiation performance.
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IX. APPENDIX I. SUMMARY OF DEVICES AND TECHNOLOGIES

Device Series Foundry

CSM

CSM

MEC

MEC

MEC

Contlg. Core

Teclm. Volt.

SRAM 2.5

ONO 5

ONO 5

ONO 5

ONO 5

VF-I

A40MX02 t 40MX

A42MX09 t 42MX

A10201 ACt 1

AI020A l Act 1

AI020B _ Act 1 ONO

A1280A _ Act 2 MEC ONO

AI4100A _ Act 3 ONOMEC

MEC ONO

CSM M2M

Atmel EEPROM

Atmel SRAMAT6K

5

5

5

5

3.3

5

5

A1460A i Act 3

A54SX16 t SX

AT28C0102 AT28C

AT60102

Size

0tm)
0.18

0.45

0.45

2.0

1.2

1.0

1.0

0.8

0.8

0.35

0.8

Device Series

CX2041 a CX2001

CX3061J CX3001

JT22VPI04 PAL

QL24x32 _

QL3025 _

QYH5303

RHI020 t

RH12801

RH54SX16 _

RT54SX16 _

pASIC 1

pASIC3

QYH500

Act 1

Act 2

SX

SX

UT22VP106 RadPAL

XQR4036XL 7 XC4000XL

Foundry

Tower

CSM

Cypress

Cypress

TSMC

Yamaha

LMFS

MEC

LMFS

MEC

UTMC

Conflg.
Techn.

METAL

METAL

FUSE

M2M

M2M

METAL

ONO

ONO

M2M

M2M

M2M

SRAM

Core SIZe

Volt. (/_m)

3.3, 5 0.6

3.3 0.35

5

5 0.65

3.3 0.35

3.3, 5 0.8

5 1.0

5 0.8

3.3 0.6

3.3 0.6

5

3.3 o _t_

Foundry Information

CSM: Chartered Semiconductor Manufacturers

MEC: Matsushita Electric Company

TSMC: Taiwan Semiconductor Manufacturing Corp.

LMFS: Lockheed Martin Federal Systems

UTMC: United Technologies Microelectronics Center

Device Manufacturers
Actel

2 Atmel

3 Chip Express

4 Cypress

5 Quicklogic
6 UTMC

7 Xilinx
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